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Abstract: 

In this paper, we studied the non-stationary incompressible Navier-Stokes 

problem in two-dimensional domain by using mixed finite element method. By 

using the Linearized Crank-Nicolson-Galerkin Method we found the weak form to 

the above problem which is then improved to the approximate solution. These 

estimates are then applied to obtain quasi-optimal error analysis in the energy norm 

for velocity, pressure and velocity with pressure. 
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 ستوكس بطريقة -رتحليل الخطأ لمسألة وافيي

 كاليركيه الخطية–ويكلسون-كراوك

 مستخلص  

ستُكس غيز انمضغُطة غيز انثابتة في مجال ثىائي انبعذ  -في ٌذا انبحث, درسىا مسأنة وافييز       

كانيزكيه انخطية  َجذوا –ويكهسُن-مستخذميه طزيقة انعىصز انمىتٍي انمختهطة. بُاسطة طزيقة كزاوك
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سأنة أعلاي َثم حسبىا انحم انتقزيبي . تم تطبيق ٌذي انتخميىات نهحصُل عهى انحانة شبً انصيغة انضعيفة نهم

 نهسزعة َانضغظ َانسزعة مع انضغظ.انمثانية نتحهيم انخطأ في معيار انطاقة 

1.  Introduction       

       The classical numerical method for partial differential equations is the 

difference method where the discrete problem is obtained by replacing derivatives 

with difference quotients involving the values of the unknown at certain points. 

      The finite element method is a numerical analysis technique for obtaining 

approximate solutions to a wide variety of problems in mechanics and physics[5]. 

Although originally developed to study stresses in complex airframe structures, it 

has since been extended and applied to the broad field of continuum mechanics. 

Because of its diversity and flexibility as an analysis tool, it is receiving much 

attention in engineering schools and in industry. In this method, the discretization 

procedures reduce the problem to one of a finite number of unknowns by dividing 

the solution region into elements and by expressing the unknown field variable in 

terms of assumed approximating functions within each element. The 

approximating functions (sometimes called interpolation functions) are defined in 

terms of the values of the field variables at specified points called nodes or nodal 

points[9]. 

      Mixed finite element methods are one of the important approaches for solving 

system of partial differential equations, for example, the stationary Navier-Stokes 

equations. However, fully discrete system of mixed finite element solutions for the 

stationary Navier-Stokes equations is of many degrees of freedom[8]. 

 

1.1  Notation 

     Let Ω be an open and bounded domain in 2R with Lipschitz continuous 

boundary   .Throughout this paper we will use the standard notation for Sobolev 
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spaces. Specially  rH , where r is an integer greater than zero, will denotes the 

Sobolev space of real-valued functions with square integrable derivatives of order 

up to r equipped with the usual norm which we denote 
r

 . We will denote 

 0H by  2L  and the standard 2L  inner product by  , . Also  rH will denote 

the space of vector-valued functions each of whose n components belong to 

 rH and the dual space of  rH will be denoted by  rH .Of particular interest 

to us will be the constrained space see [9] 
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1.2  The weak formulations  

         We are interested in approximating the solution of the Navier–Stokes 

equations written in the primitive variable formulation of the velocity  21 ,uuu   

and the pressure p . In particular, we consider the steady Navier–Stokes equations, 

see [3]. 

 



infpueuu

t

u
.                                     (1.1a)                                   

 inu 0                                     (1.1b) 

                                         onu 0                            (1.1c) 

   

where and 1Hf  is given the body force per unit mass. In the following exposition 

represent to e  is the inverse Reynolds number. 
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Multiplying (1.1a) and (1.1b) by Vv  and Qq , respectively, as a test 

functions and take integral over   

     
    





,; Vvdxvfdxvpdxvuudxvuedxv

t

u
 




 ,;0 Qqdxqudiv  

by using Green's formulation 

    
    





,

2

1 2 dxvfdxvdivpdxvudxvuedxv
t

u
 




 .0dxqudiv  

We consider the following standard weak formulation of non- steady: seek 

  QVpu ,  such that 

            ,;,,,,,, Vvvfpvbvuunvuavut            (1.2a) 

 

    ,;0, Qqqub                 (1.2b) 

 

where 

  


 ,, dxvuevua  

  


 ,
2

1
,, 2 dxvuvuun  

  


 ., dxqudivqub  

Continuity of the forms     ,,,, na  and  ,b  can be demonstrated. These 

conditions guarantee the existence and uniqueness of a solution  pu,  [3]. 
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1.3 The Fully-Discrete Approximation 

Now we turn our attention to some simple schemes for discretization with 

respect to the time variable. 

1.3.1 Crank-Nicolson-Galerkin Method for Weak Formulations 

Letting  be the time step and nu  the solution in V of   Nntu n ,,2,1,,  , at 

ntt n  . This method is defined by replacing the time derivative tu in problem 

(1.2) by backward differences quotient 
 



1 nn uu
 and theu  and p  by differences 

quotient 
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1 nn uu
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with the corresponding discretization error is 
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NnVv ,1,;                                                                                             (1.3a) 
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1.3.2 Linearized Crank-Nicolson-Galerkin Method for Weak Formulations 

            Problem (1.3) shares, however with backward Euler method discussed first 

above, the disadvantage of producing, at each time level, a nonlinear system of 

problem. For this reason we shall consider also a linearized modification in which 

the argument of   ,,n  is obtained by extrapolation from 1nu  and 2nu , [2], with  
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  Qqqub n  ;0,                                            (1.4b)                                                                               

where  
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1.3.3 Linearized Crank-Nicolson-Galerkin Method for Discrete Problem 

Given finite dimensional spaces VVh   and QQh   where 10  h  then the 

approximate solution  hh pu ,  to  pu,  is the solution of the following problem: 

           NnVvvtfpvbvuunvuavuu hn

n

h

n

h

n

h

n

h

n

h

n

h ,,1,;,,,,,,
1 1 


 


       (1.5a) 

  h

n

h Qqqub  ;0,                                            (1.5b) 

The nonlinear equation (1.5a) will be solvable for nu  when 1nu  and 2nu  are given. 

Choosing   ,,n  at 1nu  as we did for the back ward Euler scheme will not be 

satisfactory here since this would be less accurate than necessary, whereas since  

  0
2

1

2

3 22

1

21 


  asOuuuu
n

nnn  

the choice just proposed will have the desired accuracy. 

2. Abstract Results 
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Let V  and Q  be two real Banach spaces with norms 
V

  and
Q

  

respectively. Let  ,a  and    Lb , be continuous bilinear forms on VV  and 

QV  respectively [4],    Ln ,,  be continuous trilinear form on VVV   [8]:  

   ,,, Vvuvuavua
VVL

                       (2.1) 

   ,,,,
2

Vvuvunvuun
VVL

                         (2.2) 

   .;, QpVupubpub
QVL

             (2.3) 

         we now state several further assumptions which we will require in the proofs 

of our main results [4]. 

(H1) There is a constant α >0 (α independent of h) such that    

  ,,
2

hW
Zvvvva   

where                                     hhh QvbVvZ   ,0,:  

(H2)  hS  is a number satisfying   .; hWV
VvvhSv    

(H3) There is a linear operator hh VY  :  satisfying  

  .;0, hh QandYyyyb    

Definition 2.1 [6] Cauchy-Schwarz inequalities:  

        
  ,,;, 2

222 


Lwvwvwv
LLL

               (2.4) 

and 

         
  .,;, 1

111 


Hwvwvwv
HHH

            (2.5) 



 

 
711 

 
 

 

Lemma 2.1 There exists a linear operator hh HH  :    such that, [5] 

    ,,;,, HUVvvUdivvUdiv hhhhh   

 .2,1;  sforUChUU
s

s

h   

3.  Error Estimated 

      We shall now study the errors n

h

n uu   and n

h

n pp   where nu  and np are the 

solution of weak form and n

hu  and n

hp  are the solution of the mixed finite element 

problem ( hh QandV ) 

Theorem 3.1 Let Vun  be the solution of problem (1.4) and h

n

h Vu   is the 

approximation solution of problem (1.5). Then, there exists a constant 

0C independent of andh such that: 

 . rn

h

n hCuu                                                  (3.1) 

Proof:   Let       nnn

h

n

h

n

h

nn

h

n uuuuuu    

For each time step n  and each norm, we apply the triangle inequality 

nnn

h

n uu    

from Lemma 2.1                                       ,nrn uCh  

To find a bound on n term, note that 
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By the definition of interpolation, we have 

  ,0,  n

h

n uuA  

also note that 
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Adding and subtracting  
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choosing n   and  nn

h qp   
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By using (2.1), (2.2) and (2.3), and multiplying by  , we get 
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applying Young's inequality two sides gives, 
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choosing   1hS  , and multiplying 2 and rearranging gives 
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Summing both sides from 1n  to Nn  , we get 
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For the second term note that 
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applying Jensen's inequality (see [1]) to the right hand side  

,

11

222
2

1




 
n

n

n

n

t

t

t

t

t

t

nn dt
dt




  

this implies 

,
1

0 0

2

1

22

1

2

1

2
1

rt

T T

r

urt

r

ut

N

n

nn uhCdtuhCdt  


 


            ( 3.4) 

.
2

1 2

2

1

2
1

rt

r

u

N

n

nn uhC





 

To bound the third term of (3.3), note that  
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To bound the fourth term of (3.3), note that  
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Applying these results to (3.3) gives, 
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suppose that hhh pu 
 
in this paper, this implies we get 
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hence,                                        . rn

h

n hCuu    

The proof is complete 

 

Theorem 3.2 Let Qpn   be the solution of problem (1.4) and h

n

h Qp    is the 

approximation solution of problem (1.5) then there exists a constant 06 C  

independent of andh  such that: 
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Proof: Put nn

h uvuv  ,  in equations (1.4a) , (1.5a) respectively, then subtracting 

the equations  we find 

 

      

   .,,

,,,
1 11

nn

h

nn

h

nnn

h

nn

h

n

h

nn

h

nnn

h

n

h

nn

h

n

uufppuub

uuuuuunuuuuuu



  

         (3.7 ) 

Let      ,nnn

h

n

h

n

h

nn

h

n pppppp    

by using triangle inequality, we have 
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To estimate n  from equation (3.7), put nnn
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by using the elliptic projection , we get 
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by using (2.1), (2.2) and (2.3), and multiplying by  , we get 
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dividing by n  , we get 
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Summing both sides from 1n  to Nn  , we have 

 
,

1

11

10

1








 







N

n

n
N

n

nnN
N

n

n f
hS




  

from  equations (3.4) and (3.5), let Nn  1  , we get 
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Hence,         .7  
 rn hC  

The proof is complete.                                                                                         □ 

  

Theorem 3.3 Let   QVpu nn ,  is the solution of problem (1.4) and 

  hh

n

h

n

h QVpu ,  is the approximation solution of problem (1.5), then, there exists a 

constant 08 C independent of h  and  such that:   

      .8  rn

h

nn

h

n hCppuu                                     (3.8) 

Proof: We can prove this theorem from equations (3.1) and (3.6).               □ 
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