

وزارة التعليم العالي والبحث العلمي جامعة ميسان كلية التربية الاساسية

ألوراسات الكاميمين

العلوم الأنسانية والجتماعية والتطبيقية

ISSN (Paper)-1994-697X (Online)-2706-722X

الجلد 23 العدد 49 السئة 2024

M journal.m.academy@uomisan.edu.iq

رقم الايداع في دار الكتب والوثائق بغداد 1326 في 2009

الصفحة	فهرس البحوث	ت					
12 – 1	Impact of Vitamin D3 Deficiency on Liver and Adipose Tissue in Pregnant Mice Amenah Salman Mohammed	1					
	Diagnostic potential of salivary MMP-9 to differentiate between periodontal	<u> </u>					
23 – 13	health and disease in smokers and non-smokers	2					
	Tamarah Adil Mohammed Hussein Omar Husham Ali						
	Salivary IL-10 and TNF-α levels in Dental Caries Detection in Pediatric β-						
35 - 24	Thalassemia Major Patients						
	Ban Hazem Hassan Zainab Abduljabbar Athab						
	Compare Robust Wilk's statistics Based on MM-estimator for the Multivariate						
46 - 36	Multiple Linear Regression						
	Thamer Warda Hussein Abdullah A. Ameen						
58 - 47	Curvature Inheritance Symmetry of C9 – manifolds	5					
50-47	Mohammed Y. Abass Humam T. S. Al-Attwani	3					
	The issues of cultural expressions untranslatability from Iraqi Arabic into						
67 - 59	English language	6					
	Ahmed Mohamed Fahid						
	Hematological and biochemical parameters changes associated with Coronavirus						
80 - 68	Disease (COVID-19) for some patients in Missan Province						
	Anas, S. Abuali						
	Evaluation of the diagnostic efficacy of salivary malondialdehyde among						
89 - 81	smokers and nonsmokers with periodontal disease: A case-control study						
	Haneen Fahim Abdulqader Maha Sh. Mahmood						
104 00	Mapping the Slopes' Geomorphological Classification Using Geomatics						
104 - 90	Techniques: A Case Study of Zawita, Iraq						
	Enhancement methods of intrusion detection systems using artificial intelligence						
112 - 105	methods (TLBO) Algorithm	10					
112 - 105	Mohammed Saeed Hashim Al-Hammash Haitham Maarouf						
	In Silico Interaction of Select Cardiovascular Drugs with the Developmental						
124 - 113	Signal Pathway Pax3						
	Sarah T. Al-Saray						
	Influence of gingivitis in preterm delivery on serum biomarkers COX-2 and						
135 - 125	PGE-2	12					
	Shaden Husham Maddah Ghada Ibrahim Taha						
142 126	Detection and Identification of Chlamydia causing Ear infection by PCR.	10					
143 - 130	Rabab Saleh Al.sajedy Ghaida'a . J. AL.Ghizzawi	13					
152 144	Metric areas and results of best periodic points	14					
152 - 144	Maytham zaki oudah Al Behadili	14					
	Structural and Optical Properties of Co doped CdS Nanoparticles Synthesised						
157 - 153	by Chemical Method	15					
	Uday Ali Sabeeh Al-Jarah Hadeel Salih Mahdi						
	The occurrence of <i>Lactobacillus</i> and <i>Candida albicans</i> in patients with thyroid						
166 - 158	disorders						
	Riam Hassoun Harbi Maha Adel Mahmood						

172 167	An overview of the loquat's (Eriobotrya japonica) active components	17					
1/3 - 10/	Shahad Basheer Bahedh Dina Yousif Mohammed	17					
	Study the mineralogy of Al-Faw soil in southern Iraq and determine swelling						
183 - 174	properties by indirect methods	18					
	Haneen.N. Abdalamer Huda.A.Daham						
	The Role of pknF and fbpA as a virulence genes with Interleukin4-and 6, in the						
192 - 184	Pathogenesis of Tuberculosis	19					
	Samin Riyadh Faisai						
203 - 193	لغه الأنفعال في النص الشعري التسعيني	20					
	أحمد عبد الكريم ياسين العزاوي						
	الحماية الدستورية لحقوق الأطفال عديمي الجنسية في التعليم في التشريعات العراقية (دراسة مقارنة)						
218 - 204	الباحث كامل خالد فهد معمد محمد	21					
	التنبؤ بالطلب على الخزين باستعمال الشبكات العصبية الاصطناعية مع تطبيق عملي						
230 – 219	أيمن خليل اسماعيل لمياء محمد علي حميد	22					
	يعض التقديرات المعلمية واللامعلمية لأنموذج الانحدار الدائري بالمحاكاة						
240 - 231	رنا صادق نزر عمر عبد المحسن على	23					
	القتل في القران والسنة (دراسة في الاسباب والاثار والوقاية)						
258 - 241	حاسب غازى رشك						
271 - 259	الطريفة الصوفية البكناشية دراسة تحليلية	25					
	جبار ناصر يوسف						
206 272	السياسات التعليمية في الفكر الإسلامي مدخل لتعزيز البناء الاجتماعي	26					
200-272	حامد هادي بدن						
206 297	دراسة سندية لحديث: (أهل بيتي أمان لأمتي) وفق المنهج الحديثي عند أهل السنَّة	27					
300-207		21					
321 - 307	الفياس والاقصاح المكاسبي عن الألتاج المربي وتق معايير المكاسبة الدوبية	28					
	رائد حازم جودة خوله حسين حمدان						
227 - 277	اسس تطبيق فن الايكيبانا في دروس الإشغال الفنية بقسم التربية الفنية	20					
552 - 522	سهاد جواد فرج الساكني	2)					
	تنبؤ العلاقات العامة بالأزمات عبر تطبيقات الذكاء الاصطناعي						
353 - 333	ليث صيار جاير	30					
374 - 354	روايات أهن البيت (ع) في مدح ودم أهن الحوقة دراسة تحليلية	31					
	محمد جبار جاسم						
385 - 375	تجليات الصراع الوجودي في لامية اوس بن حجر	37					
505 575	مشتاق طالب منعم	52					
	ازدواجية الهوبة الدينية وفهم الذات في رواية (عازف الغيوم) لعلى بدر أنموذجا						
392 - 386	ريونيت الهوية العينية ويهم الم-الله عن روية الرجرية العيني) مني من المحرب الما الما الما الما الما الما الما الما						
402 - 393	مشروع الحلف الأسلامي السعودي وموقف الحيان الصهيوني (دراسة تحتينية في الوبانق الأمريجية)	34					
	سعد مهدي جعفر						

» Misan Journal for Academic studies

Vol 23 Issue 49 march 2024

The Role of pknF and fbpA as a virulence genes with Interleukin4-and 6, in the Pathogenesis of Tuberculosis Samih Riyadh Faisal* University of Misan, Collage of Science, Department of biology, Misan, Iraq <u>Samih2.riyadh2@gmail.com*</u> ORCID: <u>https://orcid.org/orcid-</u> search/search?searchQuery=ORCID:%200009-0009-3973-3897 Zahrah Adnan Dakhel Alshammarii** University of Misan, Collage of Science, Department of biology, Misan, Iraq <u>Maysaniraq144@uomisan.edu.iq**</u> ORCID: <u>https://orcid.org/orcid-</u> search/search?searchQuery=0000-0002-2500-2067

اذار 2024

محلة ميسان للدراسات الأكاديمية

49 AM

Abstract:

Tuberculosis (TB) is a global health problem caused by

Mycobacterium tuberculosis (MTB), a bacterium that can evade the host immune system and keep at in a latent state. Drug-resistant strains of MTB, such as multi-drug resistant TB (MDR-TB), pose a significant challenge toward the TB control efforts. This study aimed to investigate the role of two MTB virulence genes, *pknF* and *fbpA*, and two host cytokines, Interleukin-4 and Interleukin-6, in the pathogenesis of TB. The expression levels of *pknF* and *fbpA* genes were measured by qPCR in (12) sensitive TB and (12) MDR-TB isolates. IL-4 and IL-6 were measured by ELISA in serum samples from (24) healthy controls, (12) patients having sensitive TB, and 12 patients having MDR-TB. The results revealed a significant difference in *fbpA* gene expression between MDR-TB (2.59± SE 0.36) and sensitive TB ($1.01 \pm$ SE0.037) isolates (P=0.0003), whereas pknF gene expression did not vary significantly across the two groups (2.53±0.62 in MDR-TB and 1.72±0.40 in sensitive TB) (p=0.289). IL-4 levels were markedly elevated in patients with MDR-TB (1091.967± SE 108.793 pg/ml) compared to the control group $(105.3358 \pm SE 5.543 \text{ pg/ml})$ (p<0.0001), but not significantly different from patients with sensitive TB (1054.763 \pm SE 71.482 pg/ml). IL-6 levels were significantly higher in both MDR-TB and sensitive TB patients than in the control group $(9.253 \pm SE \ 0.456)$ pg/ml). However, MDR-TB patients showed a non-significant lower ratio of IL-6 (38.5851 \pm Se 4.601 pg/ml) than sensitive TB patients $(42.458 \pm SE 1.809)$. A significant negative correlation were observed between *fbpA* gene expression and IL-4 levels in both MDR-TB and sensitive TB patients (r = -0.375; p < 0.0001 and r = -0.165; p < 0.0001, respectively), and a positive correlation between *fbpA* gene expression and IL-6 levels in both groups (r = 0.1006; p < 0.10060.0001 and r = 0.466; p < 0.0001, respectively). These findings suggest that *pknF* and *fbpA* genes may play a role in the virulence of MTB, especially in drug-resistant strains, and that IL-4 and IL-6 may be involved in the host immune response to MTB infection. These potential biomarkers could be used to develop targeted therapies for MDR-TB and improve TB control efforts globally.

Keys words: Tuberculosis, *mycobacterium tuberculosis, Pknf* gene, *FbpA* gene, Interleukin 4, Interleukin 6

ison jas Misan Journal for Academic studies Vol 23 Issue 49 march 2024

1. Introduction:

Tuberculosis (TB) is a disease caused by bacterium MTB, and has some charters as small, rod shaped, strictly aerobic, acid fast bacillus that resists discoloration by acid and alcohol once stained and grows slowly, leading to a more gradual development of disease compared to other airborne bacterial infections. TB typically affects the lungs but can also involve other body parts, such as the brain, kidneys, or spine (Sharma et al, 2021; Torfs et al, 2019). Multidrug-resistant TB (MDR-TB) has been identified as a form of TB resistant to as a minimum isoniazid (INH) and rifampin (RIF), as well as more than one anti-TB drug (Sambas et al, 2020). The World Health Organization (WHO) recently updated its definitions of extensively drug-resistant tuberculosis (XDR-TB) and defined pre-XDR-TB for the first time. Pre-XDR-TB is now defined as TB caused by MTB strains meeting the criteria for multidrug-resistant and rifampicin-resistant TB (MDR/RR-TB) and exhibiting resistance to any fluoroquinolone (Viney et al, 2021; Walsh, 2019). Bacterial virulence factors, which typically cause damage to the host, are produced by bacterial cells. They increase adhesion, facilitate colonization and invasion into eukaryotic cells, evade host immune responses, and provide essential nutrients (Land, 2023; Gnanagobal and Santander, 2022). pknF, a serine/threonine protein kinase (STPK) in MTB, found to display a vital role in the bacterium's physiology and pathogenesis (Mori et al, 2019). This kinase is involved in various cellular processes of physiological importance, such as cell division, arabino synthesis, mycolic acid synthesis, peptidoglycan synthesis, TCA cycle, methionine cycle, signaling, chaperone, and transport (Cabarca et al, 2021). Additionally, pknF has been demonstrated to play a crucial role in innate immune evasion (Rastogi et al, 2021). The Fibronectin-Binding Protein A (fbpA) gene is one of three genes encoding the antigen 85 complex in MTB. Composed of three distinct trehalose dimycolyl transferases (Ag85A, Ag85B, and Ag85C), the antigen 85 complex is involved in mycolate deposition (Mehaffy et al, 2019). The FbpA protein has been shown to elicit an immune response in TB patients (Ernst et al, 2019). Interleukin-6 (IL-6), a cytokine with numerous biological roles, belongs to the proinflammatory cytokine group and enhances the expression of various proteins accountable for acute inflammation. IL-6 plays a significant character in the proliferation and differentiation of cells. It has been reported that MTB modulates host IL-6 production to inhibit type I interferon signaling and consequently, disease progression (Aliyu et al, 2022). Interleukin-4 (IL-4), another cytokine with multiple biological roles, stimulates the proliferation of activated B cells and T cells and the differentiation of B cells into plasma cells. It is a crucial regulator in humeral and adaptive immunity (Cao et al, 2023). The involvement of IL-4, a T-helper type 2 (Th2) cytokine, in the immune-pathogenesis of human tuberculosis remains uncertain. Some studies suggest that IL-4 may contribute to tissue destruction and/or cell death during MTB infection (Atitey and Anchang, 2022; Wu et al, 2022).

2. Materials and Methods:

Study population: 24 Blood samples (12 samples of sensitive TB patients, 12 samples of MDR-TB patients, and 24 healthy control) for measuring interleukins 4 and 6. And 24 confirmed TB patients (12 sensitive TB, 12 MDR-TB) for measuring *pknf*, *fbpA* gene expressions.

Total RNA Extraction: The total RNA was gained from cell lysates by distraction with small glass beads. First, bacteria were lysed with lysozyme (Sigma-Aldrich, 20 mg/mL) and proteinase K (Sigma-Aldrich, 2 mg/mL) solution and incubated for (10) min at (37) °C. Then, (600) μ L of RLT buffer (Qiagen, Hilden, Germany) was added to guarantee bacterial lysis. The samples were shaken in a Fast Prep Homogenizer (MP Biomedicals, Santa Ana, CA, USA) at a speed of 6.5, 2 cycles of (30) s and were then centrifuged at 8000× g for 1 min (Eppendorf, Hamburg, Germany) to remove cell fragments. Total RNA was gained with the RNeasy system (Qiagen, Hilden, Germany). Total RNA was measured by spectrophotometry and stored at (-70) °C.

Conversion of RNA to cDNA: LunaScript Reverse Transcriptase/ Biolabs/England RT component Kit is considered to make the reverse transcription optimized for real-time RT-PCR. It uses RTase,

which features admirable extendibility and makes fast, effective cDNA template synthesis for Real Time PCR.

Performing RT-PCR: A 2X reaction mix that can be used for real-time qPCR to detect and quantify target DNA sequences is the NEB Luna Universal qPCR Master Mix. It is compatible with the SYBR/FAM channel of most real-time qPCR instruments. Hot Start Taq DNA Polymerase is contained in it and a unique passive reference dye that is compatible across different instrument platforms (including those that require a high or low ROX reference signal) is formulated with it. It also features dUTP for carryover prevention and a non-fluorescent, visible dye to monitor reaction setup. This dye does not spectrally overlap with fluorescent dyes used for qPCR and will not interfere with real-time detection. The master mix formulation is supplied at 2X concentration and contains all PCR components required for amplification and quantitation of DNA except primers and DNA template.. Primer used in this study for amplifying *PknF* and *FbpA* genes are (F-GTGGTGATCAGCCAGCATCT), (R- AATCTCCTCGCGACATTCCC). (F-GCTTCATAGCGTTGAGCTGC), (R-AGCTTGTTGACAGGGTTCGT) respectively.

IL-4 and IL-6 measurement: They were measured by using sandwich enzyme linked immunosorbent assay (ELISA) kits (Elabscience, Swedish).

Statistical analysis: The data were analyzed using SPSS software (version 23.0). Continuous variables were expressed as mean \pm standard Errors compared using t-test. Correlations between IL-4 and IL-6 levels and clinical variables were evaluated using Pearson's correlation coefficient. A p-value <0.05 was considered statistically significant.

3. Results and Discussion:

3.1 Gene expression levels of *PknF* and *FbpA* in sensitive TB and MDR-TB patients :

Relative expression level of *pknF* and *fbpA* were using the RNA 16S as internal control for normalization of RNA quantities in both two groups (sensitive and resistance TB)(Figure 1). Expression level measured in vitro for sensitive MTB and MDR-TB (Table 1,2). In (Figure 2) there is non-Significant up-regulation of the *pknF* gene in MDR-TB isolates (Mean 2.53±SE 0.62), compared to drug-susceptible TB isolates (Mean 1.72±SE 0.40) (P-value 0.2891). Additionally, *fbpA* also measured for both groups and there is a significant up-regulation in MDR-TB (Mean 2.59±SE 0.36), compared to drug susceptible TB (Mean 1.01±SE 0.037) (P-value <0.05) (Table 3). These findings are consistent with previous studies that have reported increased expression of drug resistance genes in MDR-TB patients for example, Nguyen *et al.*(2005) showed the disruption of *fbpA* gene has a low rate 45% in pathogenesis of mycobacterium tuberculosis.

			Fold (2^-		Fold (2^-
<mark>N-MDR</mark>	16SRNA	<mark>fbpA</mark>	$\Delta\Delta CT)$	<mark>pkn</mark> F	$\Delta\Delta CT$)
1	22.6	28.6	0.65975	38.4	0.21764
2	25.6	29.1	3.73213	37	4.59479
3	24.8	28.5	3.24901	38.2	1.1487
4	25.4	29	3.4822	36.8	4.59479
5	24.6	28.4	3.03143	39.9	0.30779
6	25.2	30.4	1.1487	36.6	4.59479
7	24.4	28.3	2.82843	39.7	0.30779
8	25	31.6	0.43528	36.4	4.59479
9	24.2	28.2	2.63902	39.2	0.37893
10	24.8	28.7	2.82843	36.2	4.59479
11	24	28.1	2.46229	39	0.37893
12	24.6	27.8	4.59479	36	4.59479

Table(1): Presents gene expression levels of 16s rRNA, FbpA, and PknF

مجلة ميسان الدراسات الكاديمية Misan Journal for Academic studies مجلة ميسان الدراسات الكاديمية Vol 23 Issue 49 march 2024 2024

Table(2): Gene expression levels of 16srRNA, *fbpA*, and *pknF* genes in MDR-TB genes in sensitive MTB

			Fold		
			(2^-		
N-Sensitive	16SRNA	<mark>FbpA</mark> .	$\Delta\Delta CT$)	<mark>pknf</mark>	Fold ($2^{-\Delta\Delta CT}$)
1	25.8	31	1.1487	39.8	0.75786
2	26.4	31.5	1.23114	38.4	3.03143
3	25.6	30.9	1.07177	39.6	0.75786
4	26.2	31.4	1.1487	38.2	3.03143
5	25.4	30.8	1	41.3	0.20306
6	26	31.3	1.07177	38	3.03143
7	25.2	30.7	0.93303	41.1	0.20306
8	25.8	31.2	1	37.8	3.03143
9	25	30.6	0.87055	40.6	0.25
10	25.6	31.1	0.93303	37.6	3.03143
11	24.8	30.5	0.81225	40.4	0.25
12	25.4	31	0.87055	37.4	3.03143

Table(3): Expression of *fbpA* and *pknF* Genes in Sensitive and MDR-TB: Analysis of ΔCT , $\Delta \Delta CT$, and Fold

Genes	Groups	ΔCT (Mean ±	Р	ΔΔCT	P value	Fold Change	P value
		SE)	value	(Mean		$(2^{\Lambda-\Delta\Delta CT})$	
				±SE)		Mean ±SE	
	N-Sensitive	5.40±0.05	0.0017	0.00 ± 0.05	0.0017	1.01±0.037	0.0003
FbpA	N-MDR	.30±0.314		-1.11±0.31		2.59±0.36	
	N-Sensitive	13.58 ± 0.51	0.6029	-0.02±0.51	0.6029	1.72 ± 0.40	0.2891
PknF	N-MDR	13.18±0.56		.560-0.42±		2.53±0.62	

(Figure 1) represent the gene expression of 16s rRNA

Misan Journal for Academic studies

Vol 23 Issue 49 march 2024

Figure 2. The mean level of pknF and fbpA gene expressions of MTB in Sensitive TB and MDR-TB

3.2 Interleukins levels (4 and 6) in sensitive TB and MDR-TB patients:

As shown in table (4), the study reported a highly significant difference in IL-4 levels between active TB and control group (p< 0.0001). Moreover, the study results revealed a significant difference in IL-4 levels between MDR-TB and control group (p< 0.0001), with no statistically significant difference observed between active and MDR-TB cases (P= 0.388). This elevation between MDR-TB and healthy controls relative to active TB and healthy individuals suggests that high IL4 levels correlated with disease progression. A study from India investigated serum concentration of IL-4 revealed a significant rising in MDR-TB cases compared to control group (p<0.001), as observed in present study and other studies by Rook *et al*, 2004 and Smith *et al*, 2002 showed that IL-4 was higher in all TB patient groups compared with healthy control, these changes imply a decreased Th1-lymphocyte activity in these groups (active TB and MDR-TB).

The study also reported a highly significant difference in IL-6 levels between active TB and healthy controls (P< 0.0001), with no statistically significant difference observed between active and MDR-TB cases (P= 0.2209). These findings are agreed with studies by Correia *et al*, 2009. The robust increase observed in this study indicates that IL-6 contributes to the inflammatory activity in TB patients, in accordance with its pro-inflammatory potential in experimental models of acute infection (Poveda *et al*, 1999

Table (4): Comparison of IL-4 and IL-6 expression levels in control group, sensitive TB and MDR-TB patients

Parameter	Groups	N	Mean	Std. Error	P-value
IL-4 (Pg/ml)	Control	24	105.358	5.543	0.0001*
	G1	12	1054.763	71.482	
	G2	12	1091.967	108.793	0.388
IL-6 (Pg/ml)	Control	24	9.253	0.456	0.0001*
	G1	12	42.458	1.809	
	G2	12	38.585	4.601	0.2209

GI: patients with sensitive TB **G2**: patients with MDR-TB

P-value ≥ 0.05

3.3 .Correlation between gene expression levels and interleukins levels:

In tables (5) and (6) the correlation analyses has been done to investigated the relationship between gene expression levels and cytokines levels in the study population. The results showed a

Misan Journal for Academic studies Vol 23 Issue 49 march 2024

significant weak negative correlation between the expression levels of *fbpA* and the levels of interleukins 4 in MDR-TB patients (r = -0.375). While in drug-susceptible TB patients, *fbpA* vs. IL-4 was (r = -0.165). The study showed a positive relationship between *fbpA* gene expression levels and IL-6 levels in both groups, in MDR-TB patients (r = 0.514). In drug-susceptible patients fbpA vs. IL-6 (r = 0.46)(P< 0.05). It was shown that virulence attenuation in mouse models was induced by disruption of the *fbpA* gene in MTB, indicating the essential role of *fbpA* in pathogenicity. A strong immune response was also elicited by the $\Delta fbpA$ mutant in vaccinated mice, which is consistent with the potent immunogenicity and vaccinogenicity of Ag85 as a complex proteins. The alterations in cytokine levels in infected mice were observed, with increased levels of IFN- γ , IL-6, and TNF- α in mice infected with the Δ fbpA mutant. This suggests that the host immune response modulated by *fbpA*, possibly by suppressing the production of proinflammatory cytokines (Peeridogaheh et al, 2019; Mukhopadhyay et al, 2012), This is consistent with previous studies showing that Ag85 complex proteins can modulate the host immune response in various ways, including by inhibiting the production of cytokines and chemokines (Layre, 2020). Further studies are needed to fully understand the interactions between *fbpA* and the host immune system in TB pathogenesis.

The results of expression levels of *pknF* showed no significant differences in MDR-TB vs. IL-4 (r= 0.088) and drug-susceptible TB patients vs. IL-4 (r= -0.380). The study also showed no significant differences in MDR-TB vs. IL-4 (r = 0.110). And in drug-susceptible patients *pknF* vs. IL-6 (r = 0.1809) (P>0.05).

pknF, a serine/threonine kinase, is a critical player in the pathogenicity of MTB (Pal *et al*, 2022). It is involved in the regulation of cell wall biosynthesis and has been shown to interact with *Rv1747*, an ABC-transporter protein, in a phosphorylation-dependent manner (Hui, 2021). The absence of *Rv1747* results in a reduced growth rate in macrophages, highlighting its significance for the normal multiplication phase of the bacterium within these hosts (Li, 2021). Bonne Køhler *et al.*(2020) showed that *PknF's* involvement in the pathogenicity of MTB extends beyond its role in regulating cell wall biosynthesis. The kinase also interacts with other proteins that are critical for the growth and survival of the bacterium within the host. Also Narayan *et al.*(2007) reported that the *pknF* is one of the STPKs plays important roles in regulating various cellular processes such as stress response, cell cycle regulation, and development. They have been revealed to be a vital virulence factors in various pathogenic bacteria, including mycobacteria. These findings suggest that there may be a weak relationship between the expression of specific genes and the levels of pro-inflammatory and inhibitory cytokines in TB patients.

No	pknF DS-TB	IL-4 DS- TB	IL-6 DS- TB	<i>pknF</i> MDR	IL-4 MDR	IL-6 MDR	Correlation (r) DS-TB
1						36.5	I1-4
	0.75786	1442.14	44.29	0.21764	1503.57		-0.38
2						53.57	Il-6
	3.03143	950.71	50.83	4.59479	893.57		0.18
3	0.75786	977.86	43.83	1.1487	861.43	49.92	
4	3.03143	957.86	40.92	4.59479	861.43	48.96	Completter.
5	0.20306	977.86	38.08	0.30779	1539.29	46.70	(r)
6	3.03143	978.57	48.88	4.59479	1785.467	44.63	MDR TB
7						11.08	IL-4
	0.20306	932.86	49.46	0.30779	789.14		0.088
8						17.43	I1-6
	3.03143	978.57	41.54	4.59479	827.14		0.21
9	0.25	878.57	39.25	0.37893	798.57	49.92	
10	3.03143	954.29	30.67	4.59479	1539.29	53.57	
11	0.25	1695	34.17	0.37893	811.14	44.54	
12	3.03143	932.86	47.58	4.59479	893.57	50.79	

Table(5).6	orrelation	hetween	PknF	gene and	II 4	and IL - 6
I able(5):C		Detween	ГКПГ	gene and	11 4	and IL-0

No	fhn A DS-TR	IL-4 DS-TR	IL-6 DS-TR	fhn4 MDP	II -4	II -6	Correlation (r) DS-
140	JUPA DS-1D	IL-4 DS-1D	IL-0 D5-1D	JUPA MDK	IL-4	IL-0 MDD	TD
					MDK	MDK	18
				0.45055			H 4 0.16
1	1.1487	1442.14	44.29	0.65975	1503.57	36.5	IL-4 = -0.16
•				0 = 0 0 1 0			
2	1.23114	950.71	50.83	3.73213	893.57	53.57	IL-6= 0.46
2	1 07177	077.96	42.92	2 24001	961.42	40.02	
3	1.0/1//	977.80	43.83	5.24901	801.45	49.92	
4	1 1487	957.86	40.92	3 4822	861.43	48.96	
-	1.1.107	227.00	40.92	3.1022	001.45	10100	
5	1	977.86	38.08	3.03143	1539.29	46.70	Correlation (r)
6	1.07177	978.57	48.88	1.1487	1785.467	44.63	MDR TB
7	0.93303	932.86	49.46	2.82843	789.14	11.08	IL-4= -0.37
8	1	978.57	41.54	0.43528	827.14	17.43	Il-6= 0.514
9	0.87055	878.57	39.25	2.63902	798.57	49.92	
10	0.93303	954.29	30.67	2.82843	1539.29	53.57	
11	0.01005			2.46220			
11	0.81225	1695	34.17	2.46229	811.14	44.54	
10	0.07055	022.04	47.50	4 50 470	002 57	50.70	
14	0.87055	932.86	47.58	4.39479	893.57	50.79	

relation between *flnA* gene and II

4. Conclusions:

In conclusion, The study found significant differences in gene expression levels of *FbpA* and non-significant levels in pknF. Cytokine levels of interleukins (4 and 6) were statistically significant between control group compared to sensitive TB and MDR-TB patients. However, there wasn't a significant difference between sensitive TB and MDR-TB. These findings provide further evidence for the complex mechanisms underlying TB pathogenesis, also have important implications for future research and clinical practice. Further research is required to fully comprehend the strategies of the role of specific genes and cytokines implicated in this process.

References:

- 1) Sharma, A., Sharma, A., Malhotra, R., Singh, P., Chakrabortty, R.K., Mahajan, S., Pandit, A.K., An accurate artificial intelligence system for the detection of pulmonary and extra pulmonary Tuberculosis,(2021). Tuberculosis, Vol.131, No.1. pp. 1-9. https://doi.org/10.1016/j.tube.2021.102143
- 2) Torfs, E., In vitro biological investigation of novel anti-tubercular compound classes and the development improved research tools,(2019). University Antwerp. of of https://repository.uantwerpen.be/desktop/irua
- 3) Sambas, M.F.M.K., Rabbani, U., Al-Gethamy, M.M.M., Surbaya, S.H., Alharbi, F.F.I., Ahmad, R.G.A., Alsharif, K.F.A., Darweesh, B.A.K., Prevalence and determinants of multidrug-resistant tuberculosis in Makkah, Saudi Arabia, (2020). Infection and Drug Resistance, Vol.13, No.1, , pp. 4031-4038. https://doi.org/10.2147/IDR.S277477
- 4) Viney, K., Linh, N.N., Gegia, M., Zignol, M., Glaziou, P., Ismail, N., Mirzayev, F., New definitions of pre-extensively and extensively drug-resistant tuberculosis: update from the World Health Organization, (2021). European Respiratory Journal, Vol .57, No .4 https://doi.org/10.1183/13993003.00361-2021
- 5) Walsh, K.F., Treatment of Pulmonary Tuberculosis in Haiti, (2019). Weill Medical College of Cornell

Vol 23 Issue 49 march 2024

University.<u>https://www.proquest.com/openview/ca0e5da0c1d7ba13c5c5847b4d05b86a/1?pq-origsite=gscholar&cbl=18750&diss=y</u>

- 6) Land ,W.G., Virulence of Pathogens and the Counteracting Responses of the Host ,(2023). *In Damage-Associated Molecular Patterns in Human Diseases*: Volume 3: Antigen-Related Disorders (pp . 109-202) . Cham: Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-031-21776-0_3
- 7) Gnanagobal ,H . , & Santander ,J . , Host–Pathogen Interactions of Marine Gram-Positive Bacteria ,(2022) . *Biology* , Vol .11 , No .9 , , pp . 1316. <u>https://doi.org/10.3390/biology11091316</u>
- 8) Mori ,M., Sammartino ,J.C., Costantino ,L., Gelain ,A., Meneghetti ,F., Villa ,S., & Chiarelli ,L.R., An overview on the potential antimycobacterial agents targeting serine/threonine protein kinases from *Mycobacterium tuberculosis*. (2019). *Curr Top Med Chem*, Vol. 19, No. 9, , pp. 646-661. <u>https://doi.org/10.2174/1568026619666190227182701</u>.
- 9) Cabarca S.; de Souza M.F.; de Oliveira A.A.; Muniz G.S.V.; Lamy M.T.; dos Reis C.V.; de Souza W.; Balan A... Current Research in Structural Biology(2021). *Curr Res Struct Biol*, 3(1), 165–178. <u>https://doi.org/10.1016/j.crstbi.2021.07.001</u>
- Rastogi S.; Ellinwood S.; Augenstreich J.; Mayer-Barber K.D.; Briken V... Mycobacterium tuberculosis inhibits the NLRP3 inflammasome activation via its phosphokinase PknF. (2021) PLoS Pathog. 17(7), e1009712. <u>https://doi.org/10.1371/journal.ppat.1009712</u>
- Mehaffy C.; Belisle J.T.; Dobos K.M... Mycobacteria and their sweet proteins: An overview of protein glycosylation and lipoglycosylation in *M. tuberculosis*. (2019). *Tuberculosis*, 115(1), 1– 13. <u>https://doi.org/10.1016/j.tube.2019.01.001</u>
- 12) Ernst J.D.; Cornelius A.; Bolz M... Dynamics of *Mycobacterium tuberculosis* Ag85B revealed by sensitive ELISA (2019). *bioRxiv*. <u>https://www.biorxiv.org/content/10.1101/574996v2.abstract#:~:text=doi%3A%20https%3A//doi.org/10.1101/574996</u>
- 13) Aliyu M.; Zohora F.T.; Anka A.U.; Ali K.; Maleknia S.; Saffarioun M.; Azizi G... Interleukin-6 cytokine: An overview of the immune regulation.immune dysregulation.and therapeutic approach,(2022). *International International Immunopharmacology*,Vol.111,No.1,,pp109130.
 https://doi.org/10.1016/j.intimp.2022.109130
- 14) Cao, J., Xu, H., Yu, Y. and Xu, Z., 2023. Regulatory roles of cytokines in T and B lymphocytesmediated immunity in teleost fish.
- 15) Developmental & Comparative Immunology, p.104621.
- 16) https://doi.org/10.1016/j.dci.2022.104621
- 17) Atitey K.; Anchang B... Mathematical Modeling of Proliferative Immune Response Initiated by Interactions Between Classical Antigen-Presenting Cells Under Joint Antagonistic IL-2 and IL-4
- 18) Signaling,(2022). Frontiers in Molecular Biosciences, Vol.9,No.1,,pp7. https://doi.org/10.3389/fmolb.2022.777390
- 19) Wu D.; Wang L.; Hong D.; Zheng C.; Zeng Y.; Ma H.; Zheng R... Interleukin 35 contributes to immunosuppression by regulating inflammatory cytokines and T cell populations in the acute phase of sepsis,(2022). *Clinical Immunology*, Vol.235,No.1,,pp108915. <u>https://doi.org/10.1016/j.clim.2021.108915</u>
- 20) Nguyen, L., Chinnapapagari, S., Thompson, C.J., FbpA-dependent
- 21) biosynthesis of trehalose dimycolate is required for the intrinsic multidrug resistance, cell wall structure, and colonial morphology of Mycobacterium smegmatis, (2005). J. Bacteriol., Vol.187, No.19, , pp. 6603–6611. <u>https://doi.org/10.1128/jb.187.19.6603-6611.2005</u>
- 22) Rook, G.A.; Hernandez-Pando, R.; Dheda, K.; Seah, G.T., IL-4 in
- 23) tuberculosis: implications for vaccine design,(2004). *Trends Immunol.*, Vol.25, No.9, , pp. 483–488. <u>https://doi.org/10.1016/j.it.2004.06.005</u>
- 24) Smith, S.M.; Klein, M.R.; Malin, A.S.; Sillah, J.; McAdam, K.P.W.J.;
- 25) Dockrell, H.M., Decreased IFN-γ and increased IL-4 production by human CD8+ T cells in response to *Mycobacterium tuberculosis* in tuberculosis patients,(2002). *Tuberculosis*, Vol .82, No .1, , pp . 7–13.

26) <u>https://doi.org/10.1054/tube.2001.0317</u>

- 27) Correia ,J.W.; Freitas ,M.V.; Queiroz ,J.A.; PereiraPerrin ,M.; Cavadas
- 28) ,B. Interleukin-6 blood levels in sensitive and multiresistant tuberculosis. (2009) *Infection* , Vol .37 , No .3 , , pp . 138–141. <u>https://link.springer.com/article/10.1007/s15010-008-7398-3</u>
- 29) Poveda ,F.; Camacho ,J.; Arnalich ,F.; Codoceo ,R.; Del Arco ,A.;
- 30) Martinez-Hernández ,P. Circulating cytokine concentrations in tuberculosis and other chronic bacterial infections. (1999). *Infection* , Vol .27 , No .5 , , pp . 272–274. <u>https://link.springer.com/article/10.1007/s150100050028</u>
- 31) Peeridogaheh H., Teimourpour R., Moradi B., Yousefipour M., Gholoobi A., Baghani A., Meshkat Z... Evaluation of immune responses to a DNA vaccine encoding Ag85a-Cfp10 antigen of *Mycobacterium tuberculosis* in an animal model,(2019). *Jundishapur J Microbiol*, Vol.12, No.1.
- 32) https://doi.org/10.5812/jjm.65689
- 33) Mukhopadhyay S., Nair S., Ghosh S... Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets,(2012). *FEMS Microbiol Rev*, Vol.36, No.2, pp. 463–485. <u>https://doi.org/10.1111/j.1574-6976.2011.00302.x</u>
- 34) Layre E... Trafficking of *Mycobacterium tuberculosis* envelope components and release within extracellular vesicles: host-pathogen interactions beyond the wall,(2020). *Front Immunol*, Vol.11, No.1.
- 35) https://doi.org/10.3389/fimmu.2020.01230
- 36) Pal R., Bisht M.K., Mukhopadhyay S... Secretory proteins of *Mycobacterium tuberculosis* and their roles in modulation of host immune responses: focus on therapeutic targets,(2022). *FEBS J*, Vol.289, No.14.
- 37) https://doi.org/10.1111/febs.16369
- 38) Hui L.T... Dissecting the biophysical mechanisms of phase separation by the Myobacterium tuberculosis ABC transporter rv1747,(2021). University of British Columbia. <u>http://hdl.handle.net/2429/79794</u>
- 39) Li H... Investigating molecular clustering of Rv1747 in M.smegmatis,(2021).
- 40) UNIVERSITY OF BRITISH COLUMBIA (Vancouver).
- 41) <u>https://www.researchgate.net/profile/Hao-Ran-Li-</u> 5/publication/365355151_INVESTIGATING_MOLECULAR_CLUSTERING_OF_RV1747_IN _M_SMEGMATIS/links/637164042f4bca7fd058f714/INVESTIGATING-MOLECULAR-CLUSTERING-OF-RV1747-IN-M-SMEGMATIS.pdf
- 42) Bonne Køhler J., Jers C., Senissar M., Shi L., Derouiche A., Mijakovic I... Importance of protein Ser/Thr/Tyr phosphorylation for bacterial pathogenesis,(2020). *FEBS Lett*, Vol.594, No.15.
- 43) https://doi.org/10.1002/1873-3468.13797
- 44) Narayan A., Sachdeva P., Sharma K., Saini A.K., Tyagi A.K., Singh Y...
- 45) Serine threonine protein kinases of mycobacterial genus: phylogeny to function,(2007). *Physiol Genomics*, Vol.29, No.1. <u>https://doi.org/10.1152/physiolgenomics.00221.2006</u>