Enhancement methods of intrusion detection systems using artificial intelligence methods (TLBO)Algorithm.
الملخص
Many methods have been used to build intrusion detection system based on the objective to be achieved in the prescribed manner. Hybrid methods (multiple methods) usually give better results and accuracy. The recent developments and popularization of network & information technologies have necessitated the need for network information security. Human-based smart intrusion detection systems (IDSs) are built with the capability to either warn or intercept network intrusion; this is not possible with the conventional network security systems. However, most information security studies have focused on improvement of the effectiveness of smart network IDSs. This study used TLBO algorithm as a feature selection algorithm to choose the best subset features and SVM classifier to classify the packet if it is intrusion or normal packet, two machine learning datasets used to test the proposed algorithm, the results show that the proposed algorithm perform better than many of the existing work in IDS.
التنزيلات
الحقوق الفكرية (c) 2024 مجلة ميسان للدراسات الأكاديمية (العلوم الانسانية والاجتماعية والتطبيقية)

هذا العمل مرخص حسب الرخصة Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
تخضع جميع المقالات المنشورة في مجلتنا لشروط الترخيص
إسناد المشاع الإبداعي(CC BY-NC-ND 4.0)يسمح هذا الترخيص بإعادة إنتاج المحتوى وإعادة توزيعه وإعادة استخدامه كليًا أو جزئيًا لأي غرض مجانًا ، دون أي إذن من المؤلف (المؤلفين) أو الباحث او الطالب.
الأعمال المقدمة إلى مجلة ميسان للدراسات الاكاديمية للنشر في المجلة تخضع لشروط ترخيص(CC BY-NC-ND 4.0). حيث يمكن مشاركة المحتوى المتاح وتوزيعه وتكراره بشرط عدم وجود ربح تجاري ويجب منح الرصيد المناسب للمصدر الأصلي من خلال المصادر او الاستشهادات. من الضروري ومراجعة أي مواد تستخدم من مصادر أخرى بما في ذلك الأشكال والجداول والصور لإعادة استخدامها بموجب شروط ترخيص المشاع الإبداعي (CC BY-NC-ND 4.0). وبشرط عدم وجود تعديل على المحتوى الأصلي