Convolutional Neural Networks in Detection of Plant Diseases
Abstract
Pests and illnesses that affect plants can drastically lower crop yields and quality, endangering consumers' health. Some plant diseases can be so bad that they totally ruin grain harvests. Therefore, there is a great need in the agricultural data sector for systems that can detect and diagnose plant illnesses automatically. Color features, vein features, Gray-Level Matrix techniques, and Fourier descriptors are few of the feature extraction-based image processing approaches used here. The results concluded here support the utilization of the features obtained from divided leaves instead of the entire leaf. Combining CNN with SVM and KNN was suggested in this study. It evaluated and collated the suggested method's accuracy with approaches from other studies after using 10-fold cross-validation to assess its accuracy.
Downloads
Copyright (c) 2024 (Humanities, social and applied sciences) Misan Journal of Academic Studies
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The copyright is also the copyright of the magazine only.
All articles published in our magazine are subject to license terms
Creative Commons Attribution(CC BY-NC-ND 4.0) This license permits the content to be reproduced, redistributed and reused in whole or in part for any purpose free of charge, without any permission from the author(s), researcher or student.
Works submitted to Maysan Journal of Academic Studies for publication in the journal (CC BY-NC-ND 4.0) license terms. Where available content can be shared, distributed and replicated provided there is no commercial profit and appropriate credit must be given to the original source through sources or citations. It is mandatory to review any material used from other sources including shapes, tables, and images for re-use under the terms of the Creative Commons License (CC BY-NC-ND 4.0).Provided that there is no modification to the original content